ESWT Enhances Expression of Pdia-3 which is a Key Factor of 1α,25-Dihydroxyvitamin D3 Rapid Membrane Signaling Pathway in Treatment of Early Osteoarthritis Knee
نویسندگان
چکیده
Dysregulation of cartilage homeostasis and the changes in the density and the architecture of the subchondral bone were postulated as a potent mechanically pathological activity contributing to osteoarthritis (OA) pathogenesis. Extracorporeal shockwave therapy (ESWT) is a new, none invasive and effective method in the treatment of animal OA model. In the current study, we demonstrated that shockwave induced the expression of protein-disulfide isomerase-associated 3 (Pdia-3) which is a multifunctional protein hypothesized to be a significant mediator for 1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) signaling pathway using two-dimensional electrophoresis. Histological analysis and quantitative polymerase chain reaction (qPCR) were verified and observed that the expression of Pdia-3 at 2 weeks was significantly higher than that of any other group at 4 weeks, 8 weeks, and 12 weeks post-shockwave treatment in early OA knee of rat. The other factors of the 1α,25(OH)2D3 rapid membrane signaling pathway including extracellular signal-regulated protein kinases 1 (ERK1), osteopontin (OPG), alkaline phosphatase (ALP), and matrix metallopeptidase 13 (MMP13) were measured and significantly increased by qPCR at 2 weeks post-shockwave treatment in early OA knee. Our proteomic data revealed significant Pdia-3 expression in microenvironments of joint tissue that could be actively responded to ESWT, which may potentially regulate biological function of chondrocytes and osteoblasts in the treatment of OA knee.
منابع مشابه
Extracorporeal Shockwave Therapy Enhances Expression of Pdia-3 Which Is a Key Factor of the 1α,25-Dihydroxyvitamin D 3 Rapid Membrane Signaling Pathway in Treatment of Early Osteoarthritis of the Knee
The goal of our research was demonstrated that multiple molecules in microenvironments of the early osteoarthritis (OA) joint tissue may be actively responded to extracorporeal shockwave therapy (ESWT) treatment, which potentially regulated biological function of chondrocytes and synovial cells in early OA knee. We demonstrated that shockwave treatment induced the expression of protein-disulfid...
متن کاملTriiodothyronine potentiates angiogenesis-related factor expression through PI3K/AKT signaling pathway in human osteoarthritic osteoblasts
Objective(s): Previous study has indicated that triiodothyronine (T3) facilitated cartilage degeneration in osteoarthritis (OA). This study aimed to investigate the effects of T3 on angiogenesis-related factor expression in human osteoblasts of OA subchondral bone.Materials and Methods: The subchondral bone specimens were obtained from O...
متن کامل1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.
Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding ...
متن کاملInfluence of 1 Alpha, 25-Dihydroxyvitamin D3 on T Helper 17 Cells and Related Cytokines in Systemic Lupus Erythematosus
Background: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease. Emerging data suggests that T helper 17 (Th17) cells play a pathogenic role in SLE and the increased number of these cells correlates with disease activity. In recent years, 1α, 25-dihydroxyvitamin D3 (1,25VitD3) has been considered as an immunomodulatory factor. Objective: To investigate the effect of 1,25VitD3...
متن کامل9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016